当地时间12月13日,美国能源部官员宣布,由美国政府资助的加州劳伦斯·利弗莫尔国家实验室(LLNL),首次成功在核聚变反应中实现“净能量增益”,即聚变反应产生的能量大于促发该反应的镭射能量。

据悉,实验向目标输入了2.05兆焦耳的能量,产生了3.15兆焦耳的聚变能量输出,产生的能量比投入的能量多50%以上。

美国能源部长詹妮弗·格兰霍姆在一份声明中称,这一突破是一项“里程碑式的成就”。这项成果预计将可能帮助人类在实现零碳排放能源的进程中迈出关键一步。


(资料图)

━━━━━

早就将目光投向了“可控核聚变”

在这个寒冷的冬天,相信很多人都体会到了能源的重要性。

为了方便、高效地获得清洁能源,人们很早就将目光投向了核能技术,尤其是被称为清洁能源圣杯的“可控核聚变”。

核聚变,又称融合反应,是指将两个较轻的核结合而形成一个较重的核和一个极轻的核(或粒子)的一种核反应形式。两个较轻的核在融合过程中产生质量耗损而释放出巨大的能量,这一能量是核裂变反应的四倍。

之前,我们已经在氢弹中见识过核聚变的威力。但氢弹属于不可控核聚变,不能用来发电,而受控核聚变则是将核聚变反应控制在安全范围,也即人们所说的“人造太阳”。

在太阳中,其巨大的引力所产生的极端压力为核聚变的发生创造了条件,它把众多原子核约束在一个小空间内,同时让它们在超过 1000 万摄氏度的极高温度下相互碰撞,以使它们能够克服相互间的电排斥力。一旦原子核克服了这种排斥力并进入彼此非常接近的范围,它们之间的核力吸引力将超过电排斥力,从而使它们能够实现聚变。

在地球上,我们需要超过 1 亿摄氏度的温度和强大的压力,以使氘和氚发生聚变,还需要充分的约束,使等离子体和聚变反应保持足够长的时间,以获得净功率增益。也就是说,虽然核聚变释放的能量惊人,但整个可控核聚变过程也消耗了大量的能量,避免这种消耗的诀窍是让反应过程自我维持,使得输出的能量比输入的能量多,并且让这个过程持续而不是短暂地进行一次。如此一来,聚变能才能成为可用的能源。这是国际上公认的可控核聚变难题。

在过去的几十年里,热核聚变研究形成了两大分支,一是磁约束聚变,主攻方向是托卡马克装置(比如中国的东方超环 (EAST) 和国际热核聚变实验堆(ITER)),另外还有仿星器,反向场箍缩及磁镜等装置。另一平行研究分支是惯性约束聚变,主攻方向是激光聚变,另外还在研究轻、重离子束聚变及其它装置。

━━━━━

如何评价此次NIF的成就?

12月13日,英国《金融时报》等媒体报道称,美国劳伦斯利弗莫尔国家实验室(LLNL)的国家点火装置(NIF)已经在一项使用激光的惯性约束聚变实验中取得了重大突破,首次实现了聚变反应的净能量增益。

报道称,这项实验是通过用世界上最大的激光撞击一个微小的等离子体颗粒来实现的。实验装置由近 200 台激光器组成,有三个足球场那么大,用高能量轰击一个小点,以启动核聚变反应。

图中所示为空腔胶囊内的目标弹丸,激光束从两端的开口进入。光束将目标压缩并加热到发生核聚变的必要条件。

至于实验的细节,美国能源部已在美国太平洋时间周二上午 7 点(北京时间周二 23 点)左右进行直播介绍。

伦敦帝国理工学院惯性聚变研究中心联合主任Jeremy Chittenden评价说:“这是一个真正的突破性时刻,非常令人兴奋。”

但他也表示,尽管从核聚变中获得净能量是一件大事,但与为电网供电和为建筑物供暖所需的能量相比,它的规模要小得多。

“这相当于烧开 10 壶水。为了把它变成一个发电站,我们需要获得更多的能源,我们需要多得多的能源。”Chittenden说。

“虽然这一结果是自 1930 年代以来科学探索的一个重要里程碑,但进入利弗莫尔反应的能量与从中获得的能量之比需要提高约 100 倍,才能产生商业规模的电力。”一位消息人士发表了类似的看法。

几十年来,科学家们一直在试验聚变反应,直到现在他们才能够创造出一种产生的能量多于消耗的能量的装置。尽管成就显著,但前方仍面临巨大的工程和科学挑战。就拿发电站来说,他们要考虑如何经济地控制热量,以及如何保持激光持续发射等问题,不过这项研究也利好聚变发电厂的发展,包括英联邦聚变系统公司、加拿大核聚变技术开发商General Fusion等。

将来如果核聚变实现商业化(支持者称这可能在十年或更长时间内发生)会带来很多好处,它能产生几乎无碳的电力,这有助于应对气候变化,不会像裂变那样产生放射性核废料反应堆。

来源:综合自央视新闻、微信公众号“机器之心”

-点击阅读更多科学家的故事-

科技发展的背后离不开科技工作者的奉献

阅读“科技工作者”

了解更多科学背后的故事

推荐内容